
1

      Appendix D:    Introduction 
to Flowcharting 

 This appendix provides a brief introduction to fl owcharting. It includes example fl owcharts 
for programs that appear in  Chapters   1    through    6   . 

 A fl owchart is a diagram that depicts the “fl ow” of a program. It contains symbols that 
represent each step in the program. The fi gure shown here is a fl owchart for Program 1-1, 
the pay-calculating program in  Chapter   1   .   

 

START

END

Display message
”How many    
hours did   

you work?”   

Display message
”How much   

do you get      
paid per hour?”      

Multiply hours
by payRate.

Store result in 
grossPay.

Read hours

Read payRate

Display
grossPay

       

Z04_GADD9395_08_SE_APP4.indd Page 1  12/02/14  4:48 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 1  12/02/14  4:48 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



2 Appendix D: Introduction to Flowcharting

 Notice there are three types of symbols in this fl owchart: rounded rectangles (representing 
terminal points), parallelograms (representing input/output operations), and a rectangle 
(representing a process).   

 

Terminal ProcessesInput/Output
Operations

       

 The rounded rectangles, or terminal points, indicate the fl owchart’s starting and ending 
points. The parallelograms designate input or output operations. The rectangle depicts a 
process such as a mathematical computation, or a variable assignment. Notice that the sym-
bols are connected with arrows that indicate the direction of program fl ow. 

  Connectors 
 Sometimes a fl owchart is broken into two or more smaller fl owcharts. This is usually done 
when a fl owchart does not fi t on a single page, or must be divided into sections. A connector 
symbol, which is a small circle with a letter or number inside it, allows you to connect two 
fl owcharts.   

 
A

       

 In the fi gure below, the A connector indicates that the second fl owchart segment begins 
where the fi rst fl owchart segment ends.   

 
END

START A

A
        

Z04_GADD9395_08_SE_APP4.indd Page 2  12/02/14  4:48 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 2  12/02/14  4:48 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



 Appendix D: Introduction to Flowcharting 3

  Flowchart Structures 
 There are four general fl owchart structures: 

   •   Sequence  
  •   Decision  
  •   Repetition  
  •   Case   

 A sequence structure is a series of actions or steps, performed in order. The fl owchart for 
the pay-calculating program is an example of a sequence structure. The following fl ow-
chart is also a sequence structure. It depicts the steps performed in Program 2-21, from 
 Chapter   2   . 

  Flowchart for Program 2-21   

 END

START

Display
Total Pay

Calculate Total
Wages as Regular

Wages plus
Overtime Wages.

Calculate Regular
Wages as Base

Pay times 
Regular Hours.

Calculate Overtime
Wages as

Overtime Pay
times Overtime  

Hours.

       

 The following fl owchart, which is another sequence structure, depicts the steps performed 
in Program 3-11 (from  Chapter   3   ). Notice the use of connector symbols to link the two 
fl owchart segments.  

Z04_GADD9395_08_SE_APP4.indd Page 3  12/02/14  4:48 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 3  12/02/14  4:48 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



4 Appendix D: Introduction to Flowcharting

  Flowchart for Program 3–11   

 

START

END

 Ask user to enter
beginning  

inventory value   
for all three stores.        

Store begInv
in store1, 

store2, and  
store3.   

Subtract sold
from store1.

Read begInv.

Read sold.

 Ask user to enter
number of widgets   
sold at Store 1.    

A

A

 Ask user to enter
number of widgets   
sold at Store 2.    

Subtract sold
from sold2.

Subtract sold
from store3.

Read sold.

Read sold.

 Ask user to enter
number of widgets   
sold at Store 3.    

 Display inventory  
values for all  
three stores.    

        

  The Decision Structure 

 In a decision structure, one of two possible actions is performed, depending on a condition. 
In a decision structure, a new symbol, the diamond, represents a yes/no question. If the 
answer to the question is “yes,” the program fl ow follows one path. If the answer to the ques-
tion is “no,” the program fl ow follows another path. The following fi gure shows the general 
form of a decision structure.   

Z04_GADD9395_08_SE_APP4.indd Page 4  12/02/14  4:48 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 4  12/02/14  4:48 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



 Appendix D: Introduction to Flowcharting 5

 

NO YES

       

 In the following fl owchart segment, the question “is x < y?” is asked. If the answer is “no,” 
then process A is performed. If the answer is “yes,” then process B is performed.   

 

NO

Process A Process B

YES

x < y?

       

 The following fl owchart depicts the logic of Program 4-8, from  Chapter   4   . The decision 
structure shows that one of two possible messages is displayed on the screen, depending on 
the value of the expression  number % 2 .  

Z04_GADD9395_08_SE_APP4.indd Page 5  12/02/14  4:48 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 5  12/02/14  4:48 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



6 Appendix D: Introduction to Flowcharting

  Flowchart for Program 4–8   

 

NO

Display
”Number is

odd.”

number % 2
equal to 0?

Read number.

Ask user to enter 
an integer.

Display
”Number is

even.”

YES

START

END         

  The Case Structure 

 In a case structure, one of several possible actions is taken, depending on the contents of a 
variable. The following fl owchart segment shows the general form of a case structure.   

        

 The following fl owchart depicts the logic of Program 4–26, which is also from  Chapter   4   . 
One of 4 possible paths is followed, depending on the value stored in the variable 
 feedGrade .  

Z04_GADD9395_08_SE_APP4.indd Page 6  12/02/14  4:48 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 6  12/02/14  4:48 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



 Appendix D: Introduction to Flowcharting 7

  Flowchart for Program 4–26   

 

Start

Ask the user to 
enter the desired 

feed grade.

Read input into 
feedGrade.

End

'a'
'A'

'b'
'B'

'c'
'C' Other

case feedGrade

Display "30 cents 
per pound".

Display "20 cents 
per pound".

Display "15 cents 
per pound".

Display "That is an 
invalid choice".

        

  Repetition Structures 

 A repetition structure represents part of the program that repeats. This type of structure 
is commonly known as a loop. The following fi gure shows an example of a repetition 
structure.   

 

YES
Process Ax < y?

       

 Notice the use of the diamond symbol. A repetition structure tests a condition, and if the 
condition exists, it performs an action. Then it tests the condition again. If the condition 
still exists, the action is repeated. This continues until the condition no longer exists. In 
the fl owchart segment above, the question “is x < y?” is asked. If the answer is yes, then 

Z04_GADD9395_08_SE_APP4.indd Page 7  12/02/14  4:48 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 7  12/02/14  4:48 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



8 Appendix D: Introduction to Flowcharting

Process A is performed. The question “is x < y?” is asked again. Process A is repeated as 
long as x is less than y. When x is no longer less than y, the repetition stops and the struc-
ture is exited. 

 There are two forms of repetition structure: pre-test and post-test. A pre-test repetition 
structure tests its condition  before  it performs an action. The fl owchart segment above 
shows a pre-test structure. Notice that Process A does not execute at all if the condition “x 
< y” is not true. The pre-test repetition structure is coded in C++ as a  while  loop. 

 A post-test repetition structure tests its condition  after  it performs an action. This type of 
loop always performs its action at least once. The following fl owchart segment shows an 
example.   

 

YES

NO

Process A

x < y?

       

 The post-test repetition structure is coded in C++ as a  do-while  loop. 

 The following fl owchart depicts the logic of Program 5-6, which appears in  Chapter   5   .  

  Flowchart for Program 5-6   

 

START

number = 1.

Display Table
Headings.

Display number
and number

Squared.

number <=
10?

YES

NO

Add 1 to number.

END         

Z04_GADD9395_08_SE_APP4.indd Page 8  12/02/14  4:48 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 8  12/02/14  4:48 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



 Appendix D: Introduction to Flowcharting 9

  Modules 

 A program module (such as a function in C++) is represented by the special symbol shown 
below:   

        

 The position of the module symbol indicates the point the module is executed, as shown in 
the following fi gure:   

 

START

END

Read Input.

Call calc_pay
function.

Display results.

       

 A separate fl owchart can then be constructed for the module. The following fi gure shows a 
fl owchart for Program 6-19 from  Chapter   6   . The  getBasePay  and  getOvertimePay  modules 
appear as separate fl owcharts.  

Z04_GADD9395_08_SE_APP4.indd Page 9  12/02/14  4:49 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 9  12/02/14  4:49 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online



10 Appendix D: Introduction to Flowcharting

  Flowchart for Program 6-19   

 

Start

Ask the user to 
enter the number 
of hours worked.

hours >
BASE_HOURS?

Call
getBasePay

Yes

Call
getOvertimePay

Calculate total pay.

No

Display base pay, 
overtime pay, and total 

pay.

End

Start of 
getBasePay

YesNo hours >
BASE_HOURS?

basePay = 
BASE_HOURS * 

PAY_RATE

basePay = 
hoursWorked * 

PAY_RATE

End of 
getBasePay

Start of 
getOvertimePay

YesNo hours >
BASE_HOURS?

overtimePay = (hoursWorked 
- BASE_HOURS) * 

PAY_RATE * 
OT_MULTIPLIER

overtimePay = 0.0

End of 
getOvertimePay

           

Z04_GADD9395_08_SE_APP4.indd Page 10  12/02/14  4:49 PM f-w-155-user Z04_GADD9395_08_SE_APP4.indd Page 10  12/02/14  4:49 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online


