
1

 Appendix I: Binary Numbers
and Bitwise Operations

 One of the many powers that C++ gives the programmer is the ability to work with the
individual bits of an integer fi eld. The purpose of this appendix is to give an overview of
how integer data types are stored in binary and explain the bitwise operators that the C++
offers. Finally, we will look at bit fi elds, which allow us to treat the individual bits of a vari-
able as separate entities.

 Integer Forms
 The integer types that C++ offers are as follows:

 char
 int
 short
 long
long long
 unsigned char
 unsigned (same as unsigned int)
 unsigned short
 unsigned long
unsigned long long

 When you assign constant values to integers in C++, you may use decimal, octal, or hexa-
decimal. Placing a zero in the fi rst digit creates an octal constant. For example, 0377 would
be interpreted as an octal number. Hexadecimal constants are created by placing 0x or 0X
(zero-x, not O-x) in front of the number. The number 0X4B would be interpreted as a hex
number.

 Binary Representation
 Regardless of how you express constants, integer values are all stored the same way internally—
in binary format. Let’s take a quick review of binary number representation.

Z09_GADD9395_08_SE_APP9.indd Page 1 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 1 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

2 Appendix I: Binary Numbers and Bitwise Operations

 Let’s assume we have a one-byte fi eld. The following diagram shows our fi eld broken into
its individual bits.

 Bit Bit Bit Bit Bit Bit Bit Bit
 7 6 5 4 3 2 1 0

 High Order -------------------------> Low Order

 The leftmost bits are called the high order bits and the rightmost bits are called the low
order bits. Bit number 7 is the highest order bit, so it is called the most signifi cant bit.

 Each of these bits has a value assigned to it. The following diagram shows the values of
each bit.

 Bit Bit Bit Bit Bit Bit Bit Bit
 7 6 5 4 3 2 1 0

 Values –> 128 64 32 16 8 4 2 1

 These values are actually powers of two. The value of bit 0 is 2 0 which is 1. The value of bit
1 is 2 1 , which is 2. Bit 2 has the value 2 2 , which is 4. It progresses to the last bit.

 When a number is stored in this fi eld, the bits may be set to either 1 or 0. Here is an example.

 Bit Bit Bit Bit Bit Bit Bit Bit
 7 6 5 4 3 2 1 0

 0 1 1 0 0 1 1 0

 Values –> 128 64 32 16 8 4 2 1

 Here, bits 1, 2, 5, and 6 are set to 1. To calculate the overall value of this bit pattern, we add
up all of the bit values of the bits that are set to 1.

 Bit 1’s value 2
 Bit 2’s value 4
 Bit 5’s value 32
 Bit 6’s value 64

 Overall Value 102

 The bit pattern 01100110 has the decimal value 102.

 Negative Integer Values
 One way that a computer can store a negative integer is to use the leftmost bit as a sign bit.
When this bit is set to 1, it would indicate a negative number, and when it is set to 0 the
number would be positive. The problem with this, however, is that we would have two bit
patterns for the number 0. One pattern would be for positive 0, the other would be for
negative 0. Because of this, most systems use two’s complement representation for negative
integers.

Z09_GADD9395_08_SE_APP9.indd Page 2 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 2 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

 Appendix I: Binary Numbers and Bitwise Operations 3

 To calculate the two’s complement of a number, fi rst you must get the one’s complement.
This means changing each 1 to a 0, and each 0 to a 1. Next, add 1 to the resulting number.
What you have is the two’s complement. Here is how the computer stores the value –2.

 2 is stored as 00000010
 Get the one’s complement 11111101
 Add 1 1

 And the result is 11111110

 As you can see, the highest order bit is still set to 1, indicating not only that this is a negative
number, but it is stored in two’s complement representation.

 Bitwise Operators
 C++ provides operators that let you perform logical operations on the individual bits of
integer values, and shift the bits right or left.

 The Bitwise Negation Operator

 The bitwise negation operator is the ~ symbol. It is a unary operator that performs a nega-
tion, or one’s complement on each bit in the fi eld. The expression

 ~val

 returns the one’s complement of val . It does not change the contents of val . It could be used
in the following manner:

 negval = ~val;

 This will store the one’s complement of val in negval .

 The Bitwise AND Operator

 The bitwise AND operator is the & symbol. This operator performs a logical AND operation
on each bit of two operands. This means that it compares the two operands bit by bit. For
each position, if both bits are 1, the result will be 1. If either or both bits are 0, the results
will be 0. Here is an example:

 andval = val & 0377;

 The result of the AND operation will be stored in andval . There is a combined assignment
version of this operator. Here is an example:

 val &= 0377;

 This is the same as:

 val = val & 0377;

 The Bitwise OR Operator

 The bitwise OR operator is the | symbol. This operator performs a logical OR operation on
each bit of two operands. This means that it compares the two operands bit by bit. For each

Z09_GADD9395_08_SE_APP9.indd Page 3 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 3 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

4 Appendix I: Binary Numbers and Bitwise Operations

position, if either of the two bits is 1, the result will be 1. Otherwise, the results will be 0.
Here is an example:

 orval = val | 0377;

 The result of the OR operation will be stored in andval . There is a combined assignment
version of this operator. Here is an example:

 val |= 0377;

 This is the same as

 val = val | 0377;

 The Bitwise EXCLUSIVE OR Operator

 The bitwise EXCLUSIVE OR operator is the ̂ symbol. This operator performs a logical
XOR operation on each bit of two operands. This means that it compares the two operands
bit by bit. For each position, if one of the two bits is 1, but not both, the result will be 1.
Otherwise, the results will be 0. Here is an example:

 xorval = val ^ 0377;

 The result of the XOR operation will be stored in xorval . There is a combined assignment
version of this operator. Here is an example:

 val ^= 0377;

 This is the same as:

 val = val ^ 0377;

 Using Bitwise Operators with Masks

 Suppose we have the following variable declarations:

 char value = 110, cloak = 2;

 The binary pattern for each of these two variables will be as follows:

 value --> 0 1 1 0 1 1 1 0 = 110

 cloak --> 0 0 0 0 0 0 1 0 = 2

 The operation

 value &= cloak;

 will perform a logical bitwise AND on the two variables value and cloak . The result will be
stored in value . Remember a bitwise AND will produce a 1 only when both bits are set to 1.
Here is a diagram showing the result of the AND operation.

 value --> 0 1 1 0 1 1 1 0

 AND

 cloak --> 0 0 0 0 0 0 1 0

Z09_GADD9395_08_SE_APP9.indd Page 4 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 4 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

 Appendix I: Binary Numbers and Bitwise Operations 5

 equals

 result --> 0 0 0 0 0 0 1 0

 The 0’s in the cloak variable “hide” the values that are in the corresponding positions of the
 value variable. This is called masking. When you mask a variable, the only bits that will
“show through” are the ones that correspond with the 1’s in the mask. All others will be
turned off.

 Turning Bits On
 Sometimes you may want to turn on selected bits in a variable and leave all of the rest alone.
This operation can be performed with the bitwise OR operator. Let’s see what happens
when we OR the value and cloak variables we used before, but using a different value for
cloak.

 char value = 110, cloak = 16;
 value |= mask;

 This diagram illustrates the result of the OR operation:

 value --> 0 1 1 0 1 1 1 0

 OR

 cloak --> 0 0 0 1 0 0 0 0

 Equals

 result --> 0 1 1 1 1 1 1 0

 This caused bit 4 to be turned on and all the rest to be left alone.

 Turning Bits Off
 Suppose that instead of turning specifi c bits on, you wish to turn them off. Assume we have
the following declaration:

 char status = 127, cloak = 8;

 Bit 3 of cloak is set to 1, and all the rest are set to 0. If we wish to set bit 3 of status to 0 we
must AND it with the negation of cloak . In other words, we must get the one’s complement
of cloak , then AND it with status . The statement would look like this:

 status &= ~cloak;

 Here is what cloak ’s bit pattern looks like:

 cloak --> 0 0 0 0 1 0 0 0

 And here is the one’s complement of cloak :

 ~cloak --> 1 1 1 1 0 1 1 1

 Here is what we get when we AND status and the one’s complement of cloak :

 status --> 0 1 1 1 1 1 1 1

Z09_GADD9395_08_SE_APP9.indd Page 5 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 5 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

6 Appendix I: Binary Numbers and Bitwise Operations

 AND

 ~cloak --> 1 1 1 1 0 1 1 1

 Equals

 result --> 0 1 1 1 0 1 1 1

 Bit 3 of status is turned off, and all other bits were left unchanged.

 Toggling Bits
 To toggle a bit is to fl ip it off when it is on, and on when it is off. This can be done with the
EXCLUSIVE OR operator. We will use the following variables to illustrate.

 char status = 127, cloak = 8;

 Our objective is to toggle bit 3 of status , so we will use the XOR operator.

 status ^= cloak;

 Here is the diagram of the operation:

 status --> 0 1 1 1 1 1 1 1

 XOR

 cloak --> 0 0 0 0 1 0 0 0

 Equals

 result --> 0 1 1 1 0 1 1 1

 Bit 3 of status will be set to 0. If we repeat this operation with the new value of status , this
is what will happen:

 status --> 0 1 1 1 0 1 1 1

 XOR

 cloak --> 0 0 0 0 1 0 0 0

 equals

 result --> 0 1 1 1 1 1 1 1

 Bit 3 of status will be toggled again, restoring it to its previous state.

 Testing the Value of a Bit
 To test the value of an individual bit, you must use the AND operator. For example, if we
want to test the variable bitvar to see if bit 2 is on, we must use a mask that has bit 2 turned
on. Here is an example of the test:

 if ((bitvar & 4) == 4)
 cout << "Bit 2 is on.\n";

 Remember that ANDing a value with a mask will produce a value that hides all of the bits
but the ones turned on in the mask. If bit 2 of bitvar is on, the expression bitvar & 4 will
return the value 4.

Z09_GADD9395_08_SE_APP9.indd Page 6 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 6 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

 Appendix I: Binary Numbers and Bitwise Operations 7

 The parentheses around bitvar & 4 are necessary because the == operator has higher prece-
dence than the & operator.

 The Bitwise Left Shift Operator
 The bitwise left shift operator is two less-than signs (<<). It takes two operands. The operand
on the left is the one to be shifted, and the operand on the right is the number of places to
shift. When the bit values are shifted left, the vacated positions to the right are fi lled with 0’s
and the bits that shift out of the fi eld are lost. Suppose we have the following variables:

 char val = 2, shiftval;

 The following statement will store in shiftval the value of val shifted left 2 places.

 shiftval = val << 2;

 Let’s see what is happening behind the scenes with the value in vals .

 Before shift 0 0 0 0 0 0 1 0

 After shift 0 0 0 0 1 0 0 0

 Realize, however that val itself is not being shifted. The variable shiftval is being set to the
value of val shifted left 2 places. If we wanted to shift val itself, we could use the combined
assignment version of the left shift operator.

 val <<= 2;

 Shifting a number left by n places is the same as multiplying it by 2 n . So, this example is the
same as:

 val *= 4;

 The bitwise shift will almost always work faster, however.

 The Bitwise Right Shift Operator
 The bitwise right shift operator is two greater-than signs (>>). Like the left shift operator, it
takes two operands. The operand on the left is the one to be shifted, and the operand on the
right is the number of places to shift. When the bit values are shifted right, and the variable
is signed, what the vacated positions to the left are fi lled with depends on the machine. They
could be fi lled with 0s, or with the value of the sign bit. If the variable is unsigned, the places
will be fi lled with 0s. The bits that shift out of the fi eld are lost. Suppose we have the follow-
ing variables:

 char val = 8, shiftval;

 The following statement will store in shiftval the value of val shifted right 2 places.

 shiftval = val >> 2;

 Let’s see what is happening behind the scenes with the value in val .

 Before shift 0 0 0 0 1 0 0 0

 After shift 0 0 0 0 0 0 1 0

Z09_GADD9395_08_SE_APP9.indd Page 7 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 7 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

8 Appendix I: Binary Numbers and Bitwise Operations

 As before, val itself is not being shifted. The variable shiftval is being set to the value of
 val shifted right 2 places. If we wanted to shift val itself, we could use the combined assign-
ment version of the right shift operator.

 val >>= 2;

 Shifting a number right by n places is the same as dividing it by 2 n (as long as the number is
not negative). So, the example is the same as

 val /= 4;

 The bitwise shift will almost always work faster, however.

 Bit Fields
 C++ allows you to create data structures that use bits as individual variables. Bit fi elds must
be declared as part of a structure. Here is an example.

 struct {
 unsigned fi eld1 : 1;
 unsigned fi eld2 : 1;
 unsigned fi eld3 : 1;
 unsigned fi eld4 : 1;
 } fourbits;

 The variable fourbits contains 4 bit fi elds: field1 , field2 , field3 , and field4 . Following
the colon after each name is a number that tells how many bits each fi eld should be made
up of. In this example, each fi eld is 1 bit in size. This structure is stored in memory in a
regular unsigned int . Since we are only using 4 bits, the remaining ones will go unused.

 Values may be assigned to the fi elds just as if it were a regular structure. In this example, we
assign the value 1 to the field1 member:

 fourbits.fi eld1 = 1;

 Because these fi elds are only 1 bit in size, we can only put a 1 or a 0 in them. We can expand
the capacity of bit fi elds by making them larger, as in the following example:

 struct {
 unsigned fi eld1 : 1;
 unsigned fi eld2 : 2;
 unsigned fi eld3 : 3;
 unsigned fi eld4 : 4;
 } mybits;

 Here, mybits.field1 is only 1 bit in size, but others are larger. mybits.field2 occupies 2
bits, mybits.field3 occupies 3 bits, and mybits.field4 occupies 4 bits. Here is a table that
shows the maximum values of each fi eld:

 Field Name Number of Bits Maximum Value

 mybits.field1 1 1

 mybits.field2 2 3

 mybits.field3 3 7

 mybits.field4 4 15

Z09_GADD9395_08_SE_APP9.indd Page 8 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 8 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

 Appendix I: Binary Numbers and Bitwise Operations 9

 This data structure uses a total of 10 bits. If you create a bit fi eld structure that uses more
bits than will fi t in an int , the next int sized area will be used. Suppose we defi ne the fol-
lowing bit fi eld structure on a system that has 16 bit integers.

 struct {
 unsigned tiny : 1;
 unsigned small : 4;
 unsigned big : 6;
 unsigned bigger : 8;
 unsigned biggest : 9;
 } fl ags;

 The problem that occurs here is that flags.bigger will straddle the boundary between the
fi rst and second integer area. The compiler won’t allow this to happen. flags.tiny ,
 flags.small , and flags.big will occupy the fi rst integer area, and flags.bigger will reside
in the second integer area. There will be 5 unused bits in the fi rst. Likewise, since flags.bigger
and flags.biggest cannot fi t within one integer area, flags.biggest will reside in a third
area. There will be 8 unused bits in the second area, and 7 unused bits in the third.

 You can force a fi eld to be aligned with the next integer area by putting an unnamed bit fi eld
with a length of 0 before it. Here is an example:

 struct {
 unsigned fi rst : 1;
 : 0;
 unsigned second : 1;
 : 0;
 unsigned third : 2;
 } scattered;

 The unnamed fi elds with the 0 width force scattered.second and scattered.third to be
aligned with the next int area.

 You can create unnamed fi elds with lengths other than 0. This way you can force gaps to
exist at certain places. Here is an example.

 struct {
 unsigned fi rst : 1;
 : 2;
 unsigned second : 1;
 : 3;
 unsigned third : 2;
 } gaps;

 This will cause a 2-bit gap to come between gaps.first and gaps.second , and a 3-bit gap
to come between gaps.second and gaps.third .

 Bit fi elds are not very portable when the physical order of the fi elds and the exact location
of the boundaries are used. Some machines order the bit fi elds from left to right, but others
order them from right to left.

Z09_GADD9395_08_SE_APP9.indd Page 9 12/02/14 4:52 PM f-w-155-user Z09_GADD9395_08_SE_APP9.indd Page 9 12/02/14 4:52 PM f-w-155-user ~/Desktop/12:2:2014/1492_pcl/online~/Desktop/12:2:2014/1492_pcl/online

